Passive Design

Designing the building and the spaces within it to benefit from natural light, ventilation and even temperatures.


Effective ventilation is necessary for temperature control and air quality.

On this page:

  • passive ventilation
  • using passive ventilation for cooling
  • active ventilation
  • Building Code requirements
  • security and other passive ventilation issues

Ventilation is needed to remove pollutants such as moisture, volatile organic compounds (VOCs) and carbon dioxiode (CO2) from the building’s internal environment. These pollutants arise from household activities such as cooking, cleaning and heating, as well as human activities such as smoking.

There is evidence that our existing homes are not effectively ventilated. The BRANZ 2015 House Condition Survey found that 11% of owner-occupied and 31% of rental houses felt damp. Assessors found signs of mould in almost half the houses visited.

Ventilation is also useful for passive cooling, where it should be considered along with other passive design features such as location, orientation and layout, window size and placement, and thermal mass.

See design of passive ventilation for detail on how to specify a passive ventilation system.

Passive ventilation

Passive (naturally occurring) ventilation is when air is exchanged in a building through openings in the building envelope using the stack and wind pressures. It is made up from two sources:

  • Controlled through openings such as windows and doors or purpose-built small vents (such as trickle vents on some windows).
  • Uncontrolled by infiltration through unintentional openings such as gaps around windows and doors and between building components.

Passive ventilation is an essential component of passive design and is a free and environmentally friendly method of ventilation that is suitable for most New Zealand locations.

In most New Zealand homes, passive ventilation will be sufficient to meet most temperature control and air quality requirements, so long as it is used in conjunction with localised air extraction systems such as range hoods and bathroom extractor fans to remove moisture and pollutants.

BRANZ research has demonstrated that opening windows fully for 10–15 minutes can provide good ventilation. This does not adversely impact on indoor temperature as most of the heat stored in wall linings and furniture will be retained in this time.

Using passive ventilation for cooling

In warmer, more humid regions, passive ventilation for cooling should be included in house design. (Design of passive ventilation explains how to calculate air flow rates).

Considerations when designing a home for passive cooling:

  • Locate, orient and design a form that maximises exposure to cooling breezes.
  • Ensure there are good air flow paths through the building.
  • Specify windows that maximise air flow but minimise unwanted heat gain
  • Where possible, specify low level (i.e. near the floor) horizontal openings as these are more effective than vertical openings for ventilation purposes.

Air speeds up to 1.0 m/s can increase evaporative cooling. Air speeds above 1.0 m/s usually cause discomfort.

Passive ventilation for cooling in the summer must be countered by restricted incoming air in winter, so that minimum fresh air requirements can be maintained without causing draughts or excessive heat loss.

Active ventilation

Passive ventilation alone will not provide enough air exchange to remove moisture from wet areas such as bathrooms, kitchens and laundries. In those situations, an air extraction system or other form of active ventilation is needed to remove moisture.

Other forms of mechanical ventilation are also available and may be useful if a building is very airtight, or security or other concerns make a passive solution unviable. Heat recovery systems in particular require very airtight buildings and user education to work efficiently.

For more detail, see active ventilation.

Building Code requirements

Passive ventilation must meet the requirements of Building Code clause G4 Ventilation. This includes ensuring that spaces within buildings have adequate ventilation for their intended use and occupancy, having adequate fresh air, and have means to remove moisture, products of combustion and other airborne contaminants.

Acceptable Solution G4/AS1 provides means of demonstrating compliance, including – for most buildings – that in occupied spaces the net openable area of windows and other openings must be at least 5% of the floor area. G4/AS1 also provides means of compliance for removing moisture and contaminants from kitchens, bathrooms and laundries, and for using active ventilation.

Security and other passive ventilation issues

Natural ventilation design solutions may create other issues such as:

  • safety and security concerns
  • the ingress of noise and dust from outside entering through openings
  • draughts
  • aesthetic impact.

These issues must be addressed as part of the total design of the building.

Draughts and heat loss

Recent New Zealand research has found that even in new homes that meet Building Code requirements, draughts can reduce temperatures to uncomfortable levels.

The Wellington City Council built an apartment complex, finished in 2015, where the 27 one-bedroom apartments were double-glazed and insulated. Yet the tenants said the units were cold in winter.

The Department of Public Health at the University of Otago in Wellington looked into the problem. It found draughts were to blame. It also found that fixing sealing strips to doors helped to eliminate draughts and make the apartments an average of 1.36°C warmer.


Update: 13 November 2017